一道有趣的三元对称不等式

问题 已知\(a,b,c>0\),求证: \[ (a^2+ac+c^2)\left(\dfrac{1}{a+b+c}+\dfrac{1}{a+c}\right)+b^2\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)>a+b+c. \]

证明 不失一般性,设\(a+b+c=1\).否则,若\(a+b+c=k\neq 1\),用\(\left(\dfrac{a}{k}, \dfrac{b}{k}, \dfrac{c}{k}\right)\)代替\((a,b,c)\)即可.

于是,我们只需证 \[ (a^2+ac+c^2)\left(1+\dfrac{1}{1-b}\right)+b^2\left(\dfrac{1}{1-a}+\dfrac{1}{1-c}\right)>1 \] 我们先证:将\((a,b,c)\)调整为\(\left(\dfrac{a+c}{2}, b, \dfrac{a+c}{2}\right)\)后,左式不增.

\(f(a,b,c)=(a^2+ac+c^2)\cdot\dfrac{2-b}{1-b}+b^2\left(\dfrac{1}{1-a}+\dfrac{1}{1-c}\right)\).于是, \[ f\left(\dfrac{a+c}{2},b,\dfrac{a+c}{2}\right)=\dfrac{3}{4}(a+c)^2\cdot\dfrac{2-b}{1-b}+\dfrac{4b^2}{2-a-c} \] 所以 \[ \begin{aligned} f(a,b,c)-f\left(\dfrac{a+c}{2},b,\dfrac{a+c}{2}\right)&=\dfrac{2-b}{1-b}\cdot\dfrac{1}{4}(a-c)^2+b^2\cdot\dfrac{(a-c)^2}{(1-a)(1-c)(2-a-c)}\\&\geqslant 0. \end{aligned} \] 即原式左式不增.故我们只需证明:\(f\left(\dfrac{a+c}{2},b,\dfrac{a+c}{2}\right)>1\)

现在,令\(t=\dfrac{a+c}{2}\),则\(2t+b=1\)\(t\in\left(0,\dfrac{1}{2}\right)\).我们只需证明 \[ 3t^2\cdot\dfrac{2-b}{1-b}+\dfrac{2b^2}{1-t}>1 \]\[ 3t^2\cdot\left(1+\dfrac{1}{2t}\right)+\dfrac{2(1-2t)^2}{1-t}>1 \]\(6 t^4 + 30 t^2 + 2-25 t^3 - 13 t>0\),即\((t - 1) (t (t (6 t - 19) + 11) - 2)>0\).当\(t<1\)时,容易验证不等式成立.

综上所述,原不等式成立.(霜夏)\(\square\)

文章作者: 霜夏
文章链接: https://old.frigussum.com/2021/07/24/一道有趣的三元对称不等式/
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 霜夏の个人小站